Proximity effect in planar TiN-Silicon junctions

نویسندگان

  • D. Quirion
  • F. Lefloch
چکیده

We measured the low temperature subgap resistance of titanium nitride (superconductor, Tc=4.6K)/highly doped silicon (degenerated semiconductor) SIN junctions, where I stands for the Schottky barrier. At low energies, the subgap conductance is enhanced due to coherent backscattering of the electrons towards the interface by disorder in the silicon (”reflectionless tunneling”). This Zero Bias Anomaly (ZBA) is destroyed by the temperature or the magnetic field above 250mK or 0.04T respectively. The overall differential resistance behavior (vs temperature and voltage) is compared to existing theories and values for the depairing rate and the barrier transmittance are extracted. Such an analysis leads us to introduce an effective temperature for the electrons and to discuss heat dissipation through the SIN interface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped Nisi2 tunnel junctions

Planar and nanowire (NW) tunneling field effect transistors (TFETs) have been fabricated on ultra thin strained and unstrained SOI with shallow doped Nickel disilicide (NiSi2) source and drain (S/D) contacts. We developed a novel, self-aligned process to form the p-i-n TFETs which greatly easies their fabrication by tilted dopant implantation using the high-k/metal gate as a shadow mask and dop...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

Proximity and Josephson effects in superconductor - two dimensional electron gas planar junctions

The DC Josephson effect is theoretically studied in a planar junction in which a two dimensional electron gas (2DEG) infinite in lateral directions is in contact with two superconducting electrodes placed on top of the 2DEG. An energy gap in the excitation spectrum is created in the 2DEG due to the proximity effect. It is shown that under certain conditions, the region of the 2DEG underneath th...

متن کامل

Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008